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INVITED ARTICLE

Twisted smectics as the liquid crystal analogues of type II superconductors

Laurence Navailles and Philippe Barois*

Universite� de Bordeaux, CNRS, Centre de Recherche Paul Pascal, 115 Avenue Albert Schweitzer, 33600 PESSAC, France

(Received 11 May 2009; final form 20 May 2009)

In 1972, de Gennes pointed out the formal analogy between the Landau–Ginzburg Hamiltonians describing the
phase transition from normal to superconductor on one hand and from nematic to smectic A liquid crystals on the
other hand. This elegant analogy became a source of inspiration not only for theoreticians, as it revealed and
emphasised the beauty and the richness of the physics of liquid crystals, but also for chemists in their constant
search for novel liquid crystalline structures. The analogy with type I superconductors was first described and bore
an appropriate educational value: the expulsion of twist in smectic liquid crystals can be viewed as equivalent to the
well-known Meissner effect in superconductors. However, the investigation of the type II condition definitely
opened new doors as it led to the discovery of fantastic new liquid crystal structures. In 1988, Renn and Lubensky
‘invented’ the Twist Grain Boundary (TGB) smectic phase as the direct analogue of the Abrikosov flux lattice. The
twist penetrates the smectic layers of a TGB via a twisted lattice of screw dislocations analogous to magnetic
vortices, just as the magnetic field penetrates the type II superconductor. We review in this paper the major steps of
the experimental studies of the TGB phases and show that the observed behaviours closely follow the super-
conductor model, hence illustrating the depth of de Gennes’ analogy.

Keywords: liquid crystals; chirality; phase transitions; structures; dislocations; grain boundaries; electric field

effects

1. Introduction

Liquid crystals (LCs) and superconductors: what kind

of similarities can be imagined between these two

fields of condensed matter physics that look so differ-
ent? It was the merit of de Gennes to point out in 1972

the striking – and surprising – similarity of the

Landau–Ginzburg Hamiltonians that describe the

phase transitions from normal to superconductor on

one hand and from nematic to smectic A on the other

hand (1). From the concepts of universality and scal-

ing introduced by Kadanoff and Widom (see, for

instance, (2)) in the 1960s, it followed immediately
that similar physical behaviours were to be expected

in the two systems. Possible illustrations of this ana-

logy were suggested by de Gennes in his early paper

(1), but it took 16 years and the pioneering work of

Renn and Lubensky (3) to imagine, in 1988, the struc-

ture of the LC analogue of the Abrikosov flux phase

appearing in type II superconductors. The result is the

incredibly dislocated, twisted, but perfectly regular
structure of the Twist Grain Boundary (TGB) smectic

phase. The importance and the power of the analogy

became obvious soon after with the experimental dis-

covery of the first TGB phase by Goodby et al. in

1989 (4). The aim of this paper is to review the story of

this fantastic analogy and its experimental implica-

tions, hence paying a tribute to one of the many

visionary inputs of Pierre-Gilles de Gennes in the

physics of LCs (5).

2. Liquid crystals

LCs or mesophases are intermediate states of con-

densed matter that combine long-range positional or

orientational order along some directions of space (as

in a crystal) and liquid-like disorder along other direc-
tions. The most common liquid crystalline phases can

be obtained with organic molecules or in solutions of

surfactants. In the first case, the phase transitions are

triggered by changing the temperatures (so-called ther-

motropic LCs), whereas the structures are controlled

by the fraction of solvent in the second case (lyotropic

LCs). We will mostly restrict our attention to thermo-

tropic LCs made of elongated (or rod-like) organic
molecules, since TGBs were discovered and extensively

studied in these systems, but other molecular shapes

and lyotropic LCs will be addressed in Section 9.

2.1 The nematic phase

In the nematic phase (N), the mesogens exhibit no

long-range positional order, as in an isotropic liquid,
but instead exhibit long-range orientational order.

The long axes of the molecules are preferentially
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aligned along a common direction denoted by a vector

field n called director (Figure 1(a)). n is defined as a
unit vector bearing no polarisation (i.e. n and –n are

equivalent). The lack of positional order allows the

nematic to flow like a liquid, but the orientational

order confers anisotropic uniaxial optical properties

(birefringence) and orientational elasticity. The bulk

elastic distorsion of a nematic can be separated into

three basic deformations, namely splay (D.n), twist

(n.D · n) and bend (n · D · n) of the director. The
energetic cost of these deformations was first derived

by Frank and Oseen in a continuous description (6, 7):

�FFrank ¼
ð

d3x
K1

2
ð�:nÞ2

�
splay

þ K2

2
ðn:� · nÞ2 þ K3

2
ðn · � · nÞ2

�
:

twist bend

ð1Þ

The elastic constants Ki have the dimension of an

energy · (length)-1 and are of the order of kBT/

(molecular length). The nematic phase is ‘soft’

enough that thermal fluctuations can excite long

wavelength modes of large amplitude.

2.2 The smectic A phase

The next step towards more ordered mesophases is the

condensation of the smectic A order when the contin-

uous translational symmetry is broken along the direc-

tor. The smectic A material is a one-dimensional

periodic stack of liquid layers (Figure 1(b)). The per-

iodicity is of the order of a molecular length, i.e. 2–4

nm. The layer normal N is parallel to the director: the
smectic A phase (SmA) is uniaxial. The theoretical

description of the N–SmA transition requires the iden-

tification of an order parameter. Following de Gennes

and Prost (5) and McMillan (8), one can notice that

the layered structure of the SmA phase is characterised

by a periodic modulation of all the microscopic prop-

erties along the director n. The electron density, for

instance, commonly probed by X-ray scattering, can

be expanded in the Fourier series:

�ðxÞ ¼ �0 þ
X1
n¼1

 n eiqS :x þ  �n e�iqS :x; ð2Þ

in which qS = qS.n is the wavevector of the smectic

modulation. The fundamental term  1 in the Fourier

expansion in Equation (2) is obviously zero in the

nematic phase. It is a natural choice for the N–SmA
order parameter. It has two real independent

component

 1ðxÞ ¼ �1ðxÞ ei�1ðxÞ: ð3Þ

The modulus �1(x) measures the strength of the local SmA

ordering and phase: the more segregated the molecules

are into well-defined layers, the higher the �1. Variations
of the phase �1(x) are related to the local displacement

u(x) of the layers (with �1(x) = –i qS u(x)) and account for

local compression �//u and curvature �^u of the layers

(subscripts // and ^ denote directions parallel and perpen-

dicular to the director respectively). The smectic A order

parameter therefore has an XY symmetry.

2.3 The smectic C phase

In the smectic C phase (SmC) (Figure 1(c)), the

director n and the layer normal N make a finite

angle � (n.N = cos �). The direction of the projection

c of the director on the plane of the layers defines the

azimuthal angle ’. The SmC phase is then biaxial.

The SmA–SmC order parameter is again of XY sym-

metry with two independent components � and ’.

3. Chirality in liquid crystals

Chirality is the property of objects that are different from

their mirror image. Experiments show that the introduc-

tion of chirality (chiral mesogen or chiral dopant) in a
nematic phase generates a spontaneous twist of the direc-

tor, for instance n = (cos 2�x/P, sin 2�x/P, 0) for a helical

twist of pitch P along a direction x perpendicular to n.

Such a twisted nematic phase, first found in cholesterol

derivatives, is called cholesteric (or N*). The higher the

chirality (i.e. the enantiomeric excess or the fraction of

chiral dopant), the higher the twist (i.e. the shorter the

pitch). Twist is thus the structural response induced by
the microscopic chiral symmetry breaking, in agreement

with the Curie principle. The covariant expression of the

local twist, used in Frank energy Equation (1), is n.curl n

(= –2�/P in the example of the cholesteric helix).

Figure 1. Sketches of the Nematic, Smectic A and Smectic C
liquid crystals.
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A natural extension of the Frank energy density to chiral

nematics is then (5)

�F Chiral
Frank ¼

ð
d3x

(
K1

2
ð�:nÞ2 þ K2

2
ðn:� · nÞ2

þ K3

2
ðn · � · nÞ2 � h n:� · n

)
; ð4Þ

in which the field h coupled to the twist identifies with

the chirality. In the mean field, the free energy of a

chiral nematic �FChiral
Frank is the minimum (= –h2/2K2) for

the helical solution of twist k0 = 2�/P = -h/K2: n = (cos

2�x/P, sin 2�x/P, 0) which satisfies D.n = 0, n · curl n = 0

and n.curl n = –h/K2. Note that the pitch then gives a

measure of the chirality h. The sign of h reflects the
handedness of the helix.

In the defect-free smectic phases of layer thickness

d and layer normal N, the number of layers crossed

along a path going from a point P1 to a point P2 isÐP2

P1

dl:ðN=dÞ, independent of the path P1P2. This prop-

erty implies curl (N/d) = 0.

In a smectic A phase, the layer normal N identifies

with the director field and d is a constant so that curl

n = 0: twist and bend cannot develop on macroscopic

scales. The penetration of twist requires either a non-

uniform layer thickness d(x) (which can be achieved

on a limited scale with the twist penetration depth �2

of the order of
ffiffiffiffiffiffiffiffiffiffiffi
K2=B

p
, in which B is the elastic mod-

ulus of compression of the smectic layers (5)) or

defects, such as dislocations, which make the integralÐP2

P1

dl:ðN=dÞ path-dependent. In the mean field, n.curl

n = 0 everywhere in the smectic A phase and Equation

(4) implies that the free energy density of the choles-

teric phase is decreased by the twist term –h2/2K2 with

respect to the untwisted smectic A. The cholesteric to

SmA transition becomes first order at a temperature

TN*A lower than TNA.
In a smectic C phase, the layer normal no longer

coincides with the director field. Non-zero twist and

bend (i.e. curl n � 0) are permitted. The helical

structure of the director is n(x) = (sin� cos 2�z/P, sin�
sin 2�z/P, cos�) for a layer normal along z (N.n = cos�).

4. The nematic to smectic A transition: analogy with

superconductors

The description of the N–SmA transition is quite

simple in the mean field approximation that neglects

all spatial inhomogeneities. The order parameter is

then considered as constant for the entire sample. In

the vicinity of the N–SmA phase transition, a Landau

free energy density may be expanded in invariant

powers of the order of parameter  (subscript 1 will

be omitted in the following). Translational invariance

requires that the phase �(x) does not enter the free

energy. The Landau expansion hence reduces to

�F1 ¼
r

2
 j j2þ u0

4
 j j4þ . . . ; ð5Þ

with r = a(T – TNA) and u0 . 0, the N–SmA transition
is second order at the mean field temperature TNA. The

modulus  j j grows as (r/u0)1/2 below TNA. The critical

exponent � of the order parameter is thus 1/2 as usual

with mean field theories.

Because the smectic order is one dimensional, the

fluctuations of the layers described by the local displa-

cement field u(x) are known to play an important role,

even far away from any phase transition: the squared
amplitude ,u2(x). diverges like the logarithm of the

size of the sample (the so-called Landau–Peierls

instability (9–11)), hence killing true long-range order.

Close to the N–SmA transition, fluctuations of the

amplitude  are also expected to be important. They

are taken into account in a Landau–Ginzburg expan-

sion of a local Hamiltonian. Once again, only even

powers of  j j are permitted. Including gradient terms
and fluctuations of the nematic director �n^ = n(x) – n0

(n0 = ẑ) yields the following Landau–Ginzburg

functional:

�FN�SmA ¼
1

2

ð
d3x

(
r  j j2 þ u0

2
 j j4

þ C== �z j j2 þ C? ð�? � iqS�n?Þ j j2

þ K1 ðdiv �n?Þ2 þ K2 ðẑ:curl nÞ2

þ K3 ð�z�n?Þ2
)
: ð6Þ

The first two terms are the Landau part of Equation (5).

Because of the nematic anisotropy, the gradient terms

exhibit anisotropic coefficients (C// � C^) along direc-

tions parallel and perpendicular to the director n. With

the notation �z = @/@z and �^ = (@/@x, @/@y) and at the

lowest relevant order in �n^, these gradients have the

form shown in Equation (6). The last three terms are the

usual Frank–Oseen elastic energy of the nematic
(expanded from Equation (1)).

If one forgets about the fluctuations of the direc-

tor (i.e. set �n^ = 0 in Equation (6)), the N–SmA

problem becomes equivalent to the condensation of

superfluid helium (the XY model in dimension D = 3;

the anisotropy of the elastic coefficients C// and C^
can be removed by a simple anisotropic rescaling).
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With non-zero �n^, Equation (6) is very similar to

the Landau–Ginzburg functional describing the nor-

mal–superconductor transition (1, 5, 12):

F ¼ 1

2

ð
d3x 	  j j2þ �

2
 j j4þ 1

2m

�

�h�� i
2e

c
A

� �
 

����
����
2

þ 1

4�

ðcurl AÞ2

)
: ð7Þ

Here,  is the superconductor gap order parameter. It

corresponds to the wave function of the superconduct-

ing pair in BCS theory and has the same XY symmetry

as the smectic order parameter. The magnetic vector

potential A becomes analogous to the director field n

(m and e are the mass and the charge of a single

electron, �h = h/2� is the Planck’s constant, c is the

velocity of light and m is the magnetic permeability).
Comparing Equations (6) and (7) shows that curl n

in LCs is analogous to the magnetic field B = curl A.

Twist (n.curl n) and bend (n · curl n) are components

respectively parallel and perpendicular to the director.

The anisotropy of the two components of curl n fol-

lows from K2 � K3. An experimental bending field

coupled to n · curl n only is not easy to realise. It

would produce a spontaneous curvature of the direc-
tor of the nematic. On the other hand, chirality h is a

microscopic source of twist and identifies with the

component of a vector field h (analogous to H)

coupled to n.curl n (i.e. h = h.n). K2 is then the perme-

ability to twist. The cholesteric is then analogous to a

normal metal in a magnetic field. Table 1 summarises

the correspondence between superconductors and

LCs through de Gennes’ analogy.
Interesting behaviours of the smectic state can be

deduced from the analogy:

� Just as superconductors expel the magnetic field

curl A (the Meissner effect (13)), smectics expel

twist and bend as the two components of curl n.

Experiments confirm that the twist and bend mod-

uli K2 and K3 diverge as they should upon

approaching the smectic state from the nematic

phase.
� Two important lengths characterise a supercon-

ductor, namely the order parameter coherence

length � = (m/jrj)1/2, over which  can vary and

the London penetration depth of the magnetic

field � = (mc2/2me2j j2)1/2. Type I or type II beha-

viour depends on the value of the Ginzburg para-

meter � =�/�.
� Type I (�, 1/

p
2). The superconducting state is

observed with perfect Meissner effect below a

critical field Hc.
� Type II (� . 1/

p
2). Two critical values of the

field are found. Vortices bearing a quantum

flux �0 = ��h/e penetrate the material for H ,

Hc2 (upper critical field) and crystallise on a

triangular lattice (the Abrikosov flux lattice).

The Meissner phase condenses below the
lower critical field Hc1 , Hc2.

For smectics, two order parameter coherence

lengths �//,^ and four penetration lengths �//,^
2,3 asso-

ciated with twist and bend can be identified, which

precludes simple classification:

�==;? ¼
C==;?

rj j

� �1=2

�2;3
==;? ¼

K2;3u

2C==;?q2
S rj j

 !1=2

: ð8Þ

Although the Ginzburg parameter is not known for

smectics, the superconductor analogy suggests two dis-

tinct behaviours. They are summarised in Figure 2.

In the type II case, a mixed phase analogous to the

Abrikosov flux phase should develop. Following the

analogy, an appropriate molecular field could induce
the penetration of bend or twist via a lattice of

defects, just as magnetic flux penetrates a type II

superconductor via a lattice of magnetic vortices.

The penetration of bend via a lattice of edge disloca-

tion was proposed in de Gennes’ original paper (1).

The external ‘bending’ field was defined as a macro-

scopic bend imposed by the surfaces of a wedged cell.

It is, however, the penetration of twist that led to the
spectacular demonstration of the fantastic supercon-

ductor analogy because the ‘twisting’ field (i.e. the

molecular chirality) was easier to monitor experimen-

tally than the ‘bending’ field.

Before we introduce the structure of the smectic

analogue of the Abrikosov flux phase in the next sec-

tion, let us point out that the bare smectic coherence

Table 1. Correspondence between superconductors and
LCs through de Gennes’ analogy.

Superconductor Liquid crystal

 = | |exp(i�) = Cooper

amplitude

 = | |exp(iq0u) = mass density

wave amplitude

A = vector potenti n = nematic director

H = magnetic intensity h = molecular chirality

B = curl A = microscopic

magnetic field

k0 = n.curl n = twist

normal metal nematic

normal metal in external field cholesteric

Meissner phase Smectic A phase

London penetration depth twist penetration depth

coherence length � smectic coherence length �Sm

magnetic vortex screw dislocation

Abrikosov vortex lattice

phase

TGB (twist grain boundary) phase

1244 L. Navailles and P. Barois
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length at 0 temperature �0 = (C^/aTNA)1/2 with r = a(T –
TNA) is significantly shorter than its superconductor

equivalent (1–2 nm in metals instead of 500 nm)

because of the higher value of the transition tempera-

ture TNA. An interesting consequence deriving from the

Ginzburg criterion is that the critical domain is

expected to be much larger (i.e. more easily accessible)

in the smectic case. Experiments confirm that the N–

SmA transition does not exhibit simple mean field
behaviour, unlike low Tc superconductors. We shall

see in Section 7.2 that the effect of fluctuations bears

similarities with high-Tc superconductors.

Another important difference between the worlds

of superconductors and LCs is gauge invariance and

the absence of true smectic long-range order.

The superconductor Hamiltonian (Equation (7)) is

invariant under any gauge transformation, such as

A! A¢ ¼ Aþ�L and  !  ¢expð � q=cLÞ; ð9Þ

in which L is an arbitrary scalar field.

In the smectic case, the Frank–Oseen energy is not

gauge invariant because of the splay term K1.(div �n)2.

The lack of gauge invariance reflects the fact that the

director field n is a physical observable (unlike its mag-

netic vector potential analogue A). There is in fact only

one physical gauge, namely �nz = 0. Consequently, the
behaviour of some physical observables, such as the

correlation lengths, cannot be simply extrapolated

from the superconductor model, but can be calculated

from Gauge transformation theories (14).

5. The Renn–Lubensky model of the Twist Grain

Boundary phase

Type I behaviour of the N–SmA transition has been

commonly reported: a second order N–SmA transition

observed at temperature TNA in a racemic mixture of
chiral compounds (i.e. at zero chiral field h) becomes

first order at a lower temperature on the chiral enantio-

mer in agreement with Figure 2(a). Type II behaviour

implies the existence of a mixed phase in which the twist

penetrates the smectic structure. Its experimental search

required more theoretical guidance. The light came

from the theoretical work of Renn and Lubensky who

were the first to propose the structure of the mixed
phase – called the TGB phase or TGB – in 1988 (3).

This is shown in Figure 3. The twist penetrates the TGB

structure via a twisted lattice of screw dislocations

analogous to magnetic vortices. Smectic slabs of con-

stant thickness are regularly stacked along the pitch

direction x̂. Adjacent smectic slabs are separated by a

grain boundary (GB) formed by parallel screw disloca-

tions in a plane perpendicular to x̂. The effect of each
GB is to rotate the layer normal by a finite angle ��
linked to the density of screw dislocations by

d

2ld
¼ sin

��

2
and

lb

P
¼ ��

2�
¼ 	; ð10Þ

in which ld is the average distance between the screw

dislocations in the GB and lb is the width of a smectic

slab.

Figure 2. Temperature–field phase diagram for superconductors and liquid crystals for type I (a) and type II (b) conditions. The
magnetic field h of the superconductor diagram is replaced by the chirality field in the liquid crystal case.

Figure 3. Structure of the TGB phase. The layers are
represented, but not the molecules (from (19)).
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The twist k (; 2�/P) remains finite (= kc2) at the

upper critical field hc2 (i.e. cholesteric–TGB transition)

with kc2 = hc2/K2, but vanishes at the lower critical field

hc1 (cholesteric–SmA transition).

The reciprocal space structure of the TGB phase

depends on the value of the ratio 	.

� If 	 is irrational, the structure exhibits no periodicity

(the so-called incommensurate TGB). The reciprocal

space is a uniform ring of radius q0 = 2�/d in the

plane qy,qz perpendicular to the pitch (Figure 4(b)).

The profile along qx is Gaussian proportional to

exp(–qx
2�2) with � of the order of (q0kc2)

-1/2 (3).
� If 	 is rational (	 = p/q with p,q mutually prime

integers, the so-called commensurate TGB) the
TGB structure is periodic of period pP = q lb
along x̂ with q-fold rotational symmetry. The reci-

procal lattice is a series of rings of q equispaced

Bragg spots in a discrete series of planes at qx = 0

[2�/pP] (Figure 4(c)). The intensity of the rings

falls off quickly with qx as exp(–qx
2�2). If q differs

from the crystallographic values (2, 3, 4 or 6) the

commensurate TGB has a quasi-crystalline
symmetry.

At this point, the superconductor analogy of de

Gennes is completed by the Renn–Lubensky (RL)

model, which offers a complete theoretical description

of the first order (type I) or continuous (type II)

nematic to smectic A transition when chirality is pre-

sent. A subsequent theoretical question was about the
relevance of the type II situation. Was there any chance

to observe this fantastic TGB structure that had never

been reported before, despite intensive work on LCs?

Once again, theory proposed an answer to this ques-

tion, hence providing the chemists and the experimen-

tal physicist with precious guidance (15, 16).

The flavour of the RL solution (15) can be under-

stood from Equation (8). The transverse smectic correla-
tion length �^ and the penetration length �^ vanish and

diverge, respectively at the SmA–SmC transition where

C^ vanishes. Consequently, the Ginzburg parameter � is

expected to diverge (at least its ^ component) and the

type II condition is to be fulfilled in the vicinity of a chiral

NAC point where the N–SmA and the SmA–SmC lines

meet. The exact theoretical phase diagrams were worked

out in (16) and are shown in Figure 5. They involve three
TGB phases with different smectic orders: the TGBA

phase with local SmA order as described above and

two novel TGBC and TGBC* phases with local smectic

C and helical smectic C* order, respectively. Three

slightly different topologies were predicted for different

values of the Frank elastic constants K1–3, but all of them

opened up a stable TGB phase in place of the chiral

NAC point.

6. The experimental discovery of the TGBA phase

Shortly after the publication of the RL model, the

discovery of a TGB phase was reported by Goodby

et al. (17) in a homologous series of ferroelectric
chiral material. This new liquid crystalline phase

Figure 4. X-ray scattering intensity I(q) calculated near the
upper critical field hc2: (a) I(q) for the cholesteric phase just
above hc2. The scattering is intense on a torus obtained by
rotating an oval centred at qz = q0 and qx = 0 about the qx

axis. As a function of qx at fixed q^, I(q) is a Gaussian of
width �-1 � (q0 kc2)1/2. As a function of q^ at fixed qx, it is a
Lorentzian of finite width �-2. (b) I(q) in the TGB phase with
	 irrational. There is intense scattering on a cylinder of
radius q0 and height �-1. (c) I(q) in the TGB phase with 	 =
p/q. There are Bragg peaks at equally spaced spots on rings
of radius q0 in the y–z plane at qx = J k0/p. If q is even, there
are q spots in each ring. If q is odd, there are 2q spots in each
ring. The intensity of the spots die off as exp(–qx

2�2). In this
figure, only the Bragg peaks on rings at qx = 0 (closed circles)
and qx � �-1 (open circles) are drawn (from (3)).
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indeed combined the optical properties of a choles-

teric and the X-ray signature of a smectic phase.

The structure of the new phase was first characterised

by Srajer et al. (18) by optical and high resolution X-ray
studies performed on oriented samples. The helical nat-

ure of the phase was demonstrated by selective reflection

of circular polarised light. The helical pitch was found to

decrease linearly from 0.63 to 0.38 mm with increasing

temperature. The ring of scattering proposed by the RL

model was fully characterised with a Gaussian line shape

of characteristic width 0.033 Å-1 along the pitch direction

qx (Figure 6). No evidence of commensurability was
found in the circumference of the Bragg cylinder, so

that the twist angle �� between adjacent dislocations

could not be measured. The full set of the structural

parameters could, however, be estimated from the rea-

sonable assumption lb� ld, which yielded lb� 185 Å and

�� � 13�.
The highly dislocated real space structure was

demonstrated by freeze fracture experiments by Ihn

et al. (19). Figure 7 shows the discontinuous change of

orientation of the frozen smectic layers with respect to

the plane of fracture and the cores of the screw dis-

locations, which appear as endpoints terminating

abruptly the lines revealing the smectic steps.

At this point, only two years after the publication of
the theory (3), it was clear from the optical, X-ray

scattering and freeze fracture experiments reported

above that the existence of a new liquid crystalline

phase, fully consistent with the highly dislocated RL

model of the TGB phase, had been demonstrated.

Figure 5. Theoretical phase diagram at the chiral NAC
point. (a) If the Frank constants satisfy K1 and K2 , K3,
two TGB phases appear in the NAC region where the type II
condition is met, namely TGBA and TGBC with local SmA
and SmC order, respectively. Dashed and solid lines denote
first and second order transition lines respectively. (b) If K1

and K2 . K3, an additional TGBC* phase appears with
helical local SmC* order (from (14)).

Figure 6. X-ray intensity scattered from a well-aligned TGB
sample: (a) perpendicular to the helical axis along the radius
of the Bragg cylinder; (b) along the helical axis through the
Bragg cylinder at q// = q0 (reduced Q// = 1). The solid line is a
fit to a Gaussian function as predicted by the RL model
(from (18)).
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These pioneering results stimulated considerable inter-

est and research efforts, as we will review below.

The direct observation of the discrete and constant

rotation angle �� at thermal equilibrium came from

X-ray scattering experiments on oriented samples.

Figure 8(a) shows the discrete ring of scattering

recorded on a TGBA sample (20). According to the
RL model, the figure corresponds to a commensurate

TGB with a rational ratio 	 = 1/46, i.e. a rotation angle

�� = 2�/46 = 7.83�. The number q of spots on the ring

(=1/	) is plotted versus temperature in Figure 8(b). In

this case, the two lengths lb and ld are obtained inde-

pendently from Equation (10). The inset of Figure 8(b)

shows that the ratio lb/ld is almost constant and close to

1, which is in excellent agreement with the theoretical
calculation within harmonic elasticity theory (21, 22).

7. Phase diagrams in thermotropic liquid crystals

7.1 The chiral NAC problem and the TGBC phase

The experimental observation and characterisation of

the TGBA phase undeniably constituted a brilliant

success of the RL model. However, the complete vali-

dation of the initial superconductor analogy required

one to demonstrate the link with the type II condition.

This fundamental demonstration was provided by the
study of experimental phase diagrams and the identi-

fication of the TGBC phase proposed by Lubensky

and Renn (15) and Renn (16).

In order to investigate the vicinity of a chiral NAC

point, Nguyen et al. (23) and Bouchta et al. (24) synthe-

sised new chiral LCs combining cholesteric to smectic

transitions and a smectic A to smectic C transition in

the same series of chiral homologous compounds
nF2BTFO1M7

,. The topology of the experimental

phase diagram, shown in Figure 9, exhibits a striking

similarity with the theoretical diagram of Figure 5(a).

Figure 7. Freeze fracture image of typical screw dislocations
in the TGBA phase. The characteristic ‘river’ fracture pattern,
which terminates abruptly at the defect core, is characteristic
of screw dislocations (arrows). The screw dislocations form
the TGBs that cause the orientation of the layers to change
abruptly with respect to the fracture surface in roughly
vertical bands from left to right (from (19)).

Figure 8. (a) Diffraction pattern of a well aligned TGBA

phase. The incident beam is parallel to the pitch axis. The
ring of scattering exhibits 46 equispaced Bragg peaks. (b)
Number of Bragg spots versus temperature. Inset shows that
the ratio lb/ld is roughly constant and equal to 1 (from (20)).
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A new phase domain corresponding to the theoretical

TGBC phase opens up, surrounded by the cholesteric,

smectic C* and TGBA phases. The TGB nature of this

new phase was revealed by the simultaneous observa-

tion of selective reflection of visible light (as in a cho-

lesteric) and Bragg reflection of X-rays (as in a smectic

phase). The microscopic structure of the TGBC was
fully characterised by the Bordeaux group by X-ray

scattering from oriented samples (25). Figure 10

shows the X-ray profile along the component qx, par-

allel to the pitch axis. The scattering, diffuse and

centred at qx = 0 in the cholesteric phase, sharpens

and splits into two symmetrical peaks upon cooling in

the TGBC phase. The corresponding structure is shown

in Figure 11. Unlike the TGBA phase, the smectic C

layers are tilted by an angle !L with respect to the

helical axis. Hence, the reciprocal vectors lie on two
cones at angle �!L, relative to the symmetry plane qy,

qz. Moreover, since the value of !L identifies with the

value of the smectic C tilt, the director field n(r) remains

perpendicular to the pitch axis, as in the TGBA phases.

A consequence is that the spontaneous polarisation PS

of the chiral smectic C slabs is also perpendicular to the

pitch axis (PS / n.N) and precesses about it: the struc-

ture is hence ‘heli-electric’. This structure differs from
the TGBC originally proposed by RL with non-tilted

layers (15, 16). Kundagrami and Lubensky (26) showed

later that the free energies of the two TGBC structures

(i.e. RL and Bordeaux TGBC) are actually very close.

The modulation of the scattering around the two

cones enabled the direct measurement of the rotation

angle �� = 2�/q across the grain boundaries. Values of

q ranging from 18 to 20 (for the homologous compound
12F2BTFO1M7) and up to 26 (for 11F2BTFO1M7) were

observed. The ratio lb/ld was found to be between 7.0

and 8.5, significantly larger than in the TGBA phase (27)

in agreement with Kundagrami and Lubensky (26).

Figure 9. Experimental phase diagram showing the
occurrence of the TGB phases in the chiral NAC system.
Note the similarity of the topology with the theoretical
diagram of Figure 5(a) (data from (23) and (24)).

Figure 10. Plot of the X-ray intensity scattered along the
direction qx of the pitch axis through the Bragg maximum at
qz = q0 for the 12F2BTFO1M7 tolane compound exhibiting
a direct cholesteric–TGBC transition (from (25)).

Figure 11. Structure of the TGBC phase: (a) reciprocal space;
(b) direct space representation. The smectic layers are tilted by
an angle !L relative to the helical axis x̂(from (25)).
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The study of the homologous compound 11F2

BTFO1M7 is instructive as it reveals the behaviour at

the TGBA–TGBC transition. Figure 12 shows that the

tilt of the layers!L behaves like an order parameter with
power law behaviour (T* – T)� with � = 0.20� 0.05.

7.2 The TGBC* phase

For some particular sets of the Frank elastic constants

(K1, K2 . K3), the theory of Renn (16) suggests the

existence of an additional TGB phase in which the

smectic C slabs have a local helical Smectic C* struc-
tures (TGBC* phase, Figure 5(b)). Numerous experi-

mental efforts have been devoted to the search and

characterisation of the TGBC* phase.

In 1997, Pramod et al. (28) reported the discovery

of a new TGB phase in a binary mixture: the undulated

TGBC* (U-TGBC*), characterised by the appearance

of a translational symmetry-breaking square grid pat-

tern in the plane normal to the helix axis, and by
undulations, with displacement along the helix axis,

of the grain boundaries of isolated TGB filaments.

The model presented to explain these undulations

(29) is a helical arrangement of tilted molecules within

each SmC*-like block, similar to the Renn model of

the TGBC* phase. However, the presence of such a

helix has not been confirmed.

In 1999, Ribeiro et al. (30) published results
obtained with a single-component liquid crystalline

material. By optical and structural X-ray studies,

they characterised a TGBC phase (S-TGBC) exhibiting

a square grid optical pattern in planar geometry and a

very broad angular distribution of the layer normal (!
scans) relative to the TGB helix axis. This broad dis-

tribution profile can be interpreted either as a broad

zero-centred Gaussian function (characteristic of a

non-layer-tilted RL TGBC structure) or with two

broad overlapping maxima at +!L and -!L, (charac-

teristic of a TGBC structure where the layers are tilted
by an angle !L relative to the TGB helical axis x̂).

Galerne (31) proposed some complements to the

Renn model of the TGBC* phase, to explain the typi-

cal textures observed in oriented samples.

In 1993, Shao et al. (32) reported several new nitro-

alkoxy tolane LC materials with TGB phases over

wide temperature ranges, including TGBC phases.

The TGBC phase in one of these materials (W371,
compound #9 in (32)) was later found to exhibit the

RL layer structure, with layer normal N perpendicular

to the helix axis, as well as the square grid modulation

at low temperatures (33).

Recently, Fernsler et al. (34) studied a second

compound in this family (W376, compound #8 in

(32)). In aligned wedge-shaped samples with planar

boundary conditions, optical studies in the W376
phase show, in addition to the classical Grandjean

texture characteristic of a helical structure with the

helical axis perpendicular to the glass plates, surpris-

ing hexagonal and square grid patterns (Figure 13).

X-ray experiments made on the same sample gave

various results. Firstly, the layer spacing, d, decreases

when the temperature decreases. This is the proof of

a tilted (smectic-C) like phase. The distribution of the
layer normal (! scan) is sharp and well zero-centred.

This is characteristic of a RL TGBC structure.

Secondly, the scattering intensity recorded in the

plane perpendicular to the TGB helical axis exhibits

six equidistant spots (Figure 14), which is consistent

with 3 or 6 smectic blocks per pitch, with the angle

�� between two adjacent smectic slabs equal to 120

or 60 degrees, respectively. Additional studies by
freeze fracture experiments showed that these fea-

tures arise from a common structure of ‘giant blocks’

of thickness lb . 200 nm, terminated by sharp grain

boundaries mediating large angular jumps (60� , �
, 90�) in layer orientation between blocks, and

lubricating the thermal contraction of the smectic

layers within the blocks (Figure 15). This phenomen-

ology of ‘giant block’ TGB (GBTGB) is well
described by basic theoretical models (34), applicable

in the limit that the ratio of molecular tilt penetra-

tion length-to-layer coherence length is large, and

featuring grain boundaries with weak smectic order-

ing, approaching thin, melted (nematic-like) walls. In

this limit the energy cost of change of the block size

is small, leading to a wide variation of block dimen-

sions, depending on preparation conditions. The

Figure 12. Tilt angle !L of the layers relative to the helical
axis versus temperature at the TGBA–TGBC transition for
the molecule shown. The best fit of the data to a power law
behaviour (T* – T)� yields � = 0.20 � 0.05 (solid line).
Modulated (commensurate) and incommensurate angular
scans are indicated by triangles and squares, respectively.
The molecular structure of the material 11F2BTFO1M7 is
shown (from (25))

1250 L. Navailles and P. Barois

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



models also account for the temperature dependence

of the TGB helix pitch.
To conclude this section, let us point out that other

models of twisted smectic C phases have been proposed

by Dozov and Luk’yanchuk, namely the Melted Grain

Boundary (MGB) phase in which the grain boundaries

are melted walls instead of screw dislocation walls (35)

and the TGB2q phase, which appears as the superposi-

tion of two degenerated TGBC phases with different left

and right layers inclinations (36). However, despite the
persistence of a few open questions, the topological

connexion of the TGB problem with the chiral NAC

point is clearly established, which strongly supports the
link with the type II condition and therefore the super-

conductor analogy.

7.3 The fluctuations and the vortex liquid phase

Since the revelation of the superconductor analogy by

de Gennes, high-Tc superconductors have been discov-

ered and extensively studied (for a review, see for

instance (37)). High-Tc superconductors are essentially
type II and, unlike low-Tc superconductors, their criti-

cal domain is broad and the effects of the fluctuations

are important. In this respect, the TGB phases are

more closely related to high-Tc superconductors

through the analogy. Thermal fluctuations can cause

the regular Abrikosov lattice to melt, hence producing

the entangled flux liquid in which the flux lines are, on

average, parallel to a common direction (38).
Dissipation occurs when an applied electric field pro-

duces flux flow, unless vortex pinning generates a dis-

ordered but static vortex glass phase (39).The

observation of the LC analogue of the disordered vor-

tex states (liquid or glass) would constitute further

strong evidence of the importance of the analogy.

Kamien and Lubensky (40) have proposed a structure

for the LC vortex-liquid phase in which the screw dis-
locations exhibit no long-range positional order, but

are arranged in a helical fashion to form a cholesteric

LC. We use the subscript L to denote this new twisted

phase NL*. As in the SC case, it is important to notice

that the NL* phase locally has the order parameter of

Figure 13. Polarised light micrographs of the TGBC phase
of GBTGB for the W376 material (transmission). The TGB
helix axis is indicated in white and the SmC helix in blue. (a)
Grandjean texture of a 2 mm thick cell in the GBTGBC

phase, showing areas of 60� and 90� periodicity. (b) Planar-
aligned with the TGB and SmC helices in the plane of the cell
plates, showing orthogonal quasiperiodic arrays of lines
from both helices. (Scale bars: 20 mm, (a) and (b)) (from
(32)). Colour refers to the online version.

Figure 14. Structural features of GBTGB phase for the
W376 material. Two-dimensional detector image of the
angular distribution of intensity about the TGB helix axis
for the W376 material. The sample is a monodomain
exhibiting commensurate lock-in at 60� (from reference (34)).
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the low-temperature phase (i.e. smectic), but the

macroscopic symmetry of the high-temperature
phase. This model implies, of course, that the finite

correlation length �Sm of the smectic order parameter

is larger than the average distance between the disor-

dered screw dislocations: the very notion of screw dis-

locations becomes meaningless otherwise.

High-resolution calorimetric studies have first been

used to investigate the phase diagram of several LC

series exhibiting a SmA-TGBA-cholesteric sequence
(41, 42). The calorimetric data are consistent with the

existence of the NL* phase in an intermediate region

between the TGBA and the cholesteric phase: the broad

intense peak detected in the heat capacity measurement

above the TGBA phase can be interpreted as a super-

critical evolution from NL* to a conventional choles-

teric (see Figure 16). X-ray synchrotron studies

reported in (20) showed that the local smectic order
remains strong above the TGBA phase, which is con-

sistent with the disordered state of the Kamien–

Lubensky model (40), but also with a simple TGBA–

cholesteric transition as described in (3).

More recently, two experimental approaches

strengthened the Kamien–Lubensky model of the

NL* phase. Dynamic light scattering was used to

probe the fluctuation modes in a TGB structure (43).
In this work, the development of the TGB order at the

cholesteric to proposed NL* phase transition is

revealed by an anomalous temperature dependence

in the fluctuation spectrum and an instability in the

helicoidal director structure.

High resolution X-ray diffraction was used to per-

form accurate measurements of the smectic correlation

length �Sm (44). The data of (44) show that �Sm is finite

but larger than the average distance l between screw
dislocations in the NL* phase. �Sm decreases upon

heating until the NL*–cholesteric transition occurs

when �Sm becomes of the same order as l.

In conclusion to this section, it is undoubt-

edly fascinating to realise through the studies

reported above the depth of de Gennes’ analogy:

most of the physical behaviours known in the

world of superconductors have a confirmed
counterpart in the world of LCs.

8. Physical properties of TGB phases

Although smectic phases exhibit a very simple crys-

tallographic order, their physical behaviour is far from

trivial. The destruction of true long-range order by

the Landau–Peierl instability or the propagation of

transverse modes of undulations (so-called ‘second

sound’) are examples of complex physical properties

of smectics (1). Since TGB phases are complex
structures based on twisted stacks of smectic slabs,

their physics is indeed expected to be even more

complex. The theory of elasticity of TGB phases,

for example, has been worked out by Toner (45) for

the case of 	 irrational. It implies that fluctuations

destroy long-ranged translational order, leading to

algebraic (rather than �-function) singularities in the

X-ray scattering near both the Bragg cylinder in
reciprocal space and isolated Bragg peaks along its

axis. These results could be experimentally tested

through high-resolution X-ray scattering, which, to

our knowledge, has not yet been done.

Figure 15. Freeze fracture electron microscopy (FFEM) images of the W376 compound, with sketches of the corresponding
GBTGB layer structures. The material exhibits regions of three-block (60�) periodicity. The white arrow indicates the direction
of the TGB helix, with the blue arrow showing the effective illumination direction for shadowing of the surface topography.
MGBs are labelled with green lines. The scale of each image is indicated with a 400-nm-long pink bar. (a) Fractured at 50�C in
the TGBC phase showing the MGB, the 40-nm-long black line is clearly significantly larger than the MGB width. (b) 60�

structure in its TGBC phase (from (34)).
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In this section, we will restrict our attention to a

selection of some physical properties of the TGB

phases that have been experimentally observed.

8.1 Unwinding by an electric field

In the Abrikosov flux phase, the application of an

electric field induces a superconducting current,

which in turn creates a force on the magnetic vortices.
The LC equivalent of applying a force on the screw

dislocations of the TGB lattice is not exactly feasible.

The effect of an external electric field E is nonetheless

interesting in the case of TGBC structure, as it couples

to the spontaneous polarisation of the chiral smectic C

slabs and enables one to check the heli-electric model

proposed in Section 7.1. The electric energy term fi per

unit area of the ith slabs (Figure 11(b)) reads

fi ¼ �
ð

block

PS:E dx ¼ �PSE lbi cos
i; ð11Þ

where lbi is the ith slab thickness and 
i is the angle
between the spontaneous polarisation PSi and the

electric field direction, chosen along y. In order to

minimise the electric energy (Equation (11)), three

different mechanisms are possible: (i) a modulation

of the thickness lbi of the slabs: according to the sign

of their electric energy, slabs with positive (resp. nega-

tive) cos
i will expand (shrink); (ii) a rotation of the

slabs about the screw axis x under the effect of the

electric torque in order to increase cos
i; and (iii) a
modulation �PSi of the modulus PSi of the local polar-

isation. The first two effects have been observed and

characterised in TGBC phases (46, 47).

Figure 17 shows the evolution of the scattered x-

ray intensity around the TGBC cone in reciprocal

space.

The third effect (iii) corresponds to an electroclinic
distorsion and is expected to be strong close to the
TGBA–TGBC transition line. In the TGBC phase, the
electric polarisation PSi of slab i is proportional to ni ·
Ni = sin�i. An external field E parallel to PSi will
increase the local polarisation by increasing the tilt
angle �i. This is the well-known electroclinic effect.
Its magnitude is proportional to the component E
cos
i of the field along PSi. It is thus expected to be
modulated with 
i. A similar behaviour occurs for the
TGBA phase, which has no spontaneous polarisation
since ni · Ni = 0. The tilt and the polarisation are
induced by the field in this case. Both should be like-

wise modulated by the helical structure of the TGBA.

Figure 16. (a) High resolution measurement of the heat capacity of the compound 9FBTFO1M7. The broad feature at T = 376.4 K
is the supercritical NL*–N* evolution, not a true transition. The inset shows a detailed view of the SmA–TGBA–NL* region. (b)
Phase diagram obtained by high-resolution calorimetry for the chiral series nFBTFO1M7 (n = 8–13). (c) Theoretical phase diagram
for a type II superconductor with strong thermal fluctuations. Solid lines indicate first order transitions (from (41)).
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The local tilt �i can a priori be changed by reorienting

ni, Ni or both. A rotation of the director ni out of the

y–z plane costs a large elastic energy of bend. The

reorientation of Ni is, therefore, expected to prevail,
allowing an easy detection by X-ray diffraction.

The experimental study of the modulated electro-

clinic effect in TGB phases was actually carried out by

X-ray diffraction on oriented samples (48). The angu-

lar shift of the layer normal induced by the field is

shown in Figure 18(a) (TGBA phase) and Figure 18(b)

(TGBC phase). The dependence of the effect on field

strength and temperature is displayed in Figure 19(a).
It is well reproduced by a simple phenomenological

model of elastically coupled grain boundaries at the

TGBA–TGBC transition (Figure 19(b)).

8.2 Optical characterisation

We showed in the previous sections that the full

characterisation of the highly-dislocated structure of
the TGB phases and of the array of screw disloca-

tions required the conjunction of several experimen-

tal techniques, namely the selective reflection of light

(4), freeze fracture experiments (19) and the scatter-

ing of X-rays (18, 20). In a first approach, it seemed

that the optical properties of a TGB structure were

so close to the optics of a cholesteric helix that the

two phases could not be distinguished under a clas-
sical optical polarising microscope. This is actually

not quite true. Figure 20 shows a photograph of a

sample with a co-existing cholesteric (bottom right

corner) and a TGBC (top left) taken with an optical

microscope in a Cano wedge with weak planar

anchoring (49). Two series of defect lines are visible.

The usual array of Grandjean–Cano lines corre-

sponding to edge dislocations of the helix is present

in the two phases (large arrows). The larger spacing
of the Grandjean–Cano lines in the TGBC phase

denotes a larger pitch. A series of additional lines,

Figure 17. Simulated (a–c) and experimental (d–f) X-ray
diffraction scans around the cone of the reciprocal lattice of
a TGBC phase under a transverse DC electric field (from (47)).

Figure 18. Rocking curves (!-scans) recorded at constant
wavevector transfer Q across the ring of scattering in the
plane (Qx,Qy) perpendicular to the direction Ez of the applied
electric field for external voltage equal to 0 and 100 V. (a) In the
TGBA phase: at zero field (dots) the scattering is well fitted to
the TGB Gaussian lineshape (solid line) centred at!= 0. In the
field (diamonds) the Gaussian profile is preserved, but shifted
by 1.8� (electroclinic effect). (b) In the TGBC phase: at zero
field (dots), the profile exhibits two maxima centred at !L = �
8.5�. It is reasonably well fitted to two overlapping Lorentzian
functions (solid line). In the field (diamonds) the two maxima
are shifted both in intensity and angular position. The
variation of the intensity is due to field induced translation of
the grain boundaries. The inset shows the scattering geometry
(from (48)).
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parallel to the Grandjean–Cano, are visible in the

TGBC phase only (small arrows). These new defects

are interpreted as edge dislocations of the layered

array of smectic slabs (or equivalently grain bound-
aries) forming the TGB structure. These new ‘slab-

dislocation’ lines are also observed in the TGBA

phase. Their contrast is often improved if a quarter-

wave plate is inserted.

A Grandjean–Cano line corresponds to an

increase of the thickness of the wedged sample by

a half-pitch. If the number of TGB slabs in a pitch

is q, the number of ‘slab-dislocations’ between two
adjacent GC lines should be of the order of q/2.

A simple elastic model developed in (49) shows

that the actual number depends on the elastic

parameters of the structure and is always lower

than q/2. Moreover, these characteristic lines

appear in the thinnest region of the wedge only,

below some critical thickness of the order of 4 to 6

half-pitches.
Their observation, which is inexpensive and easy,

is a fast and safe way to characterise a TGB phase.

8.3 Commensurability

The commensurability of the TGB structures is a

fascinating aspect of the theories and a somewhat

controversial experimental question. The rational or
irrational nature of the structural ratio 	 = 2�/�� is

fascinating because commensurate TGB can be quasi-

periodic, and the physics of commensurate–incom-

mensurate transitions may exhibit curiosities, such as

Devil’s staircase behaviour (see, for instance, (50)).

The experimental observation of a commensurate

lock-in is controversial because finite size effects may

alter the interpretations (51). Indeed, the uniform ring
of scattering of an incommensurate TGB may exhibit

periodic modulations in a sample of limited thickness

(i.e. if the number of smectic slabs is not high enough

Figure 19. Tilt !L of the layers relative to the helical axis in
the presence of an applied electric field: (a) experimental
results; (b) numerical simulations (from (48)). Figure 20. Optical microphotograph of a TGBC sample in a

wedge with planar anchoring between crossed polarisers. A �/
4 plate is inserted. The photograph size is 220 · 330 mm2. The
TGBC phase coexists with the cholesteric phase visible in the
south-east corner. A series of parallel lines (small arrows)
appears in the TGBC phase only, in between the usual
Grandjean–Cano steps (large arrows). These new defects are
interpreted as edge dislocations of the layered array of smectic
slabs forming the TGB structure (from (49)).
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to fill the ring of scattering). Furthermore, a thin

enough sample will always display spots on the ring

of scattering, regardless of its commensurate or

incommensurate nature. The response to the commen-

surability question thus requires a well aligned sample

of ‘infinite’ thickness, which for experimental physi-

cists means a number of helical pitches much larger
than unity or else an average intensity on the ring of

scattering much larger than the intensity scattered by

each smectic slab. This condition is generally only

marginally satisfied on real TGB samples for which

the thickness cannot be very much larger than 25 mm

to warrant a good alignment.

The relationship between commensurability and

thickness was investigated in a wedged cell in synchro-
tron experiments with a microfocussed X-ray beam

(52). The TGBC LC was illuminated with a 20 · 40

mm2 beam and simply moved in the beam to change

the thickness D in the wedge. The diffraction patterns,

recorded on an area detector, are shown in Figure 21.

In the thinnest part of the wedge (D , 8 mm, 0–4

pitches, zone 1), the diffraction peaks of the individual

smectic slabs can be identified. A new series of Bragg
spots appears for each additional pitch. The Bragg

peaks of pitch (n + 1) do not superimpose on the

peaks of pitch n, which is the signature of an incom-

mensurate stack. In the intermediate region (8 mm , D

, 18 mm, zone 2), the distribution of Bragg peaks is

almost uniform, again suggesting the growth of an

incommensurate structure. In the thickest region (18

mm , D , 23 mm), the Bragg spots are too numerous
to be individually distinguished, but a new angular

symmetry emerges from their statistical distribution:

the spots merge into a small number of equispaced

broad maxima and build up a q-fold modulation of

the intensity of the ring of scattering. The whole set of

data is presented in Figure 22.

Interestingly, the commensurate aspect of the

scattering is absent in thin samples and appears for
higher thicknesses when the effect of surface anchoring

and restricted geometry diminishes. These observa-

tions suggest that the investigated TGBC sample is

truly commensurate and that its q-fold symmetry

results from a statistical distribution of the orientation

of the smectic slabs over the whole sample, rather than

from a true replication of the orientation at each

period. The confirmation of this picture would require
the investigation of higher thicknesses. Unfortunately,

the quality of the alignment deteriorates above 23 mm,

which precludes a more definite conclusion.

9. Other TGB-like phases and structures

The discovery of the TGB phases in rod-like thermo-

tropic mesogens has stimulated research of similar

structures in other types of LCs. The generation of a

macroscopic twist in chiral polymer and lyotropic

systems has been extensively studied, with a particular

emphasis on the structure of chiral defects. A few

important results are reviewed in this section.

9.1 Polymer systems

GB morphologies in lamellar diblock copolymers were

characterised using transmission electron microscopy

(TEM) (51–53). Two types of twist grain boundaries

were observed in which the microphase separation of

the two blocks was maintained in the GB region by

intermaterial dividing surfaces that approximate classi-

cally-known minimal surfaces. The geometry of these
interfaces was demonstrated by comparing experimen-

tal TEM images with ray tracing computer simulations

of the model surfaces. The two morphologies observed

were found to have intermaterial dividing surfaces that

approximate either Scherk’s first (doubly periodic) sur-

face or a section of the right helicoid. The helicoid

section boundary was observed at low twist angles,

less than or equal to about 15�. The Scherk’s surface
family of boundary morphologies, which consists of a

doubly periodic array of saddle surfaces, was found

over the entire twist range from 0 to 90�. As the twist

angle approaches 0�, the Scherk’s surface GB morphol-

ogy is transformed into a single screw dislocation that

has a single helicoid as intermaterial dividing.

The lamellar diblock twist boundary morphologies

share some structural characteristics of the TGBA

phase. In the TGB phase the grain boundaries occur

with a regular periodicity and are an integral part of

the equilibrium phase. The grain boundaries observed

in diblock copolymers are metastable defects instead

of thermodynamically-stable structures, and they

occur with a random distribution throughout the

material. However, the geometric requirements of

joining lamellar layers across a concentrated region
of twist reorientation are shared by both the diblock

twist boundaries and the TGB phase.

Smectic ordering has been observed in perfectly

monodisperse poly(�-benzyl 	,L-glutamate) (PBLG),

which was synthesised using recombinant DNA tech-

nology. These PBLG molecules form rigid 	-helical

rods 11.45 nm in length. An experimental study (56)

by TEM and electron diffraction reveals a banded mor-
phology with a period of approximately 120 nm, which

provides strong evidence for helical rotation of the

director field, as in a cholesteric or a twisted smectic.

Detailed examination of the relative orientation of the

banding in the morphology images and the reflections

in the electron diffraction patterns, indicating inter-

chain and intrachain correlations, leads to the conclu-

sion that the structure observed is a twisted smectic
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phase. The relationship between the twist and the layer-
ing is found to be that of a TGB phase. However, the

data do not permit one to determine whether the mono-

disperse PBLG structure is made of blocks with discrete

twist boundaries, as in a true TGB, or is a more

continuously twisting structure. Thus, the authors
refer to the phase as TGB-like. Conventional, polydis-

perse PBLG is well known for forming cholesteric

phases as a result of the chirality of the helical rod.

The formation of a TGB-like phase in monodisperse

Figure 21. Diffraction patterns recorded at four different thicknesses D in the TGBC phase. Zone 1: D = 7.5 mm � 3 pitches.
Each recorded spot corresponds to one single smectic C slab. The rectangular shape is due to the horizontal divergence of the
focussed X-ray beam. The distribution of Bragg spots in bunches of three (corresponding to pitch numbers 1, 2 and 3) is clearly
visible in the south-west quarter of the ring. The incommensurate twist angle �� is of the order of 2�/22 + 2·10-3 rd. Zone 2: (a)
D = 9 mm� 4 pitches. Individual Bragg spots begin to evenly fill the ring. (b) D = 18 mm� 9 pitches. The ring is almost uniformly
filled as for an incommensurate distribution. Zone 3: D = 21 mm � 11 pitches. The two numerous spots cannot be individually
distinguished. A 20-fold modulation of the intensity appears (from (52)).
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PBLG is consistent with the superposition of a smectic-

A layering resulting from the uniform rod length on the

twisted texture present in the cholesteric. PBLG forms a
cholesteric mesophase in a wide variety of organic sol-

vents. The cholesteric twist of PBLG is dictated by the

chirality of the	-helical macromolecules and the dielec-

tric properties of the medium and cholesteric order can

be retained in solution-cast solid films. There is no

barrier preventing the transition from a cholesteric to

a TGB-like smectic phase; the phase thus formed would

preserve the director twist characteristics of the choles-
teric. However, formation of a twisted smectic meso-

phase for conventional PBLGs is often hindered by the

polydispersity of the chains.

9.2 Lyotropic LCs

In lyotropic lamellar systems, it is believed that because

the molecules are amphiphilic, the molecular axes will

align along the layer normal in an untilted L	 phase. In

chiral lyotropic systems, there is a frustration between
this normal alignment and the tendency of the molecules

to twist (57). In 1997, Kamien and Lubensky (58)

described a screw dislocation structure for lyotropic

lamellae and proposed the existence of an L	 TGB

phase. They also discussed a possible defect mediated

phase transition between the L	 phase and a normal

cholesteric.

They first model the free energy of an isolated
bilayer membrane and consider the interactions

between identical membranes. When such membranes

are stacked together, they can form multi-layered,

lamellar structures, similar to smectic-A phases in

thermotropic LCs. In highly swollen systems, the

layer spacing d is determined by entropic repulsion

(59, 60). As in thermotropic smectics, the non-dislo-

cated L	 phase excludes twist. Likewise, a sufficiently

strong chirality can favour the penetration of twist

into the L	 phase in the form of a TGB phase.

Transitions in lyotropic systems are driven predo-

minantly via changes in concentration rather than
changes in temperature. Kamien and Lubensky deter-

mined the surfactant concentration, or equivalently

the layer spacing d, at which the L	 phase first

becomes unstable with respect to a proliferation of

dislocations by calculating the point at which the

total energy per unit length of dislocation first

becomes negative. In general, a transition occurs

when d is reduced to twice the preferred Burger’s
vector of the free membrane. Possible phase diagrams

are shown in Figure 23.

Kamien and Lubensky propose that the layers

melt via dislocation loop unbinding, as in the smectic

A–nematic transition (61, 62). Here, however, the

chiral bias will cause one handedness of screw disloca-

tion to be preferred over the other. This bias should

change a second-order-like unbinding transition to a
first-order transition: microscopic defect loops can no

longer unbind smoothly since a loop must contain an

equal number of left- and right-handed screws. Either

the defect loops will unbind and the dissident part of

the loop will move to the boundary, or, equivalently,

the appropriate dislocations will nucleate from the

boundary.

In 2006, Moreau et al. (63) report for the first
time the direct observation, using freeze-fracture

TEM, of topological melting in a lyotropic system in

the vicinity of a smectic–cholesteric (N*) phase transi-

tion. The proliferation of dislocations leads to at least

Figure 22. Plot of the angular position of the observed spots
versus thickness of the sample in the wedge. Triangles denote
individual Bragg spots diffracted by single smectic slabs,
whereas diamonds correspond to the centre of the broad
maxima of diffraction (from (52)).

Figure 23. Possible phase diagrams for the lyotropic system
as a function of chirality qo and surfactant density �. Solid
lines indicate first-order transitions while dashed lines
indicate second order (or weakly first-order) transitions. (a)
Lyotropic with four distinct phases: lamellar, TGB, N*L and
isotropic. (b) It is possible that the isotropic phase intervenes
before the TGB phase occurs. The phantom TGB region is
shown with hatched lines: it will never appear (from (58)).

1258 L. Navailles and P. Barois

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



one, and possibly two, intermediate phases, charac-

terised by orientational ordering of the dislocation

loops (Figure 24). Close to the L	–N* transition tem-

perature (T = 19�C), dislocation loops are organised

in a spatially-modulated two-dimensional structure

(Figure 25(a)). Loops still display parallel long axes,

but are now located in roughly equidistant planes.
Several fully unbound zones have been observed

(insert of Figure 25(a)). Unbound screw dislocations

create twist walls (64) (two of them are displayed in

Figure 25(b)), where the stacking direction of the

layers abruptly turns. This organisation is strongly

reminiscent of the structure of thermotropic TGB

phases. The existence of TGB-like domains is there-

fore a strong indication for a type-II smectic.

However, the authors do not know yet whether the

organisation seen in FFTEM corresponds to a macro-

scopic phase or to local order only. Presently, it is

their assumption that the spatially modulated organi-
sation of the loops (Figure 25(a)) is induced by the

macroscopic twist of a TGB-like state. This must be

checked by working on non-chiral samples exhibiting

a nematic phase instead of the N*/TGB phases. As

stated by Kamien and Lubensky, lyotropic TGB

Figure 24. Dislocation loops. (a) Freeze fracture transmission electron microscopy (FFTEM) morphology of the defects at high
magnification and T = 24�C. The texture inside the defects is smoother than outside. A thin white line can be observed in the
defects parallel to their long axis (arrows). (b) Schematic representation of a dislocation loop of Burgers vector of magnitude
two. Dotted lines indicate the axis of the two screw dislocations. Only membranes are represented. (c) Freeze fracture
morphology expected if the fracture occurs in the layer plane (from (63)).

Figure 25. FFTEM images of the DMPCsn/C12E5/H2O (Rs/l = 2.8) system at 19�C. (a) Spatially modulated structure of the
defected smectic at the LC–N* phase transition. Dislocation loops organise in equidistant planes. Insert: zone of unbound
dislocations. (b) Helical structure of the smectic phase at the LC–N* transition. The orientation of the layers turns abruptly at
each twist wall (arrows). Schematic representation of the TGB structure made of three smectic blocks separated by two twist
walls (from (63)).
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phases should mostly be liquid lines (NL*). The exact

nature of the TGB state (TGBA, TGBC, NL* . . .) still

needs to be characterised using X-ray scattering on

oriented samples.

10. Conclusion

The fantastic success of the TGB story demonstrates the

power of the superconductor analogy proposed by de

Gennes in 1972. This success was undeniably triggered

by the theoretical work of Renn and Lubensky in 1988:

their model of the TGB phase constituted a decisive step

forward for the community of chemists and experimental
physicists, as it provided the necessary theoretical support

to the concept of twisted layered structures. It is amazing

to realise how much experimental and theoretical work

followed in all types of LCs, from short thermotropic

molecules to polymers and lyotropic systems.

So far, the analogy worked essentially in one way:

from superconductors towards LCs. We reviewed in this

paper how much the physics of TGB phases benefited
from the physics of superconductors, but we have no

example of progress going the other way. One may

wonder if the study of TGB phases could in return

benefit the physics of superconductors. This may seem

unlikely if one considers that the research efforts and

resources devoted to the study of superconductors are

much higher than their TGB counterpart. It may be

worth noting, however, that the physical observables
are different in the two systems. The profile of the

order parameter for instance, is easier to measure in

LCs since the Fourier components of the smectic order

parameter are directly probed by X-ray scattering.

Finally, let us mention the decisive importance of a

contribution that de Gennes always acknowledged,

namely the strong research efforts in chemical

engineering and synthesis of new liquid crystalline
materials. We mostly focused this review on the

physics of the TGB phases, with very little emphasis

on the design of molecules and systems. It is certainly

fair to stress here that this beautiful physics owes a

large part of its impact to the synthesis of original

molecules.
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